skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sanyal, Swagato"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We initiate a systematic study of linear sketching over F_2. For a given Boolean function treated as f : F_2^n -> F_2 a randomized F_2-sketch is a distribution M over d x n matrices with elements over F_2 such that Mx suffices for computing f(x) with high probability. Such sketches for d << n can be used to design small-space distributed and streaming algorithms. Motivated by these applications we study a connection between F_2-sketching and a two-player one-way communication game for the corresponding XOR-function. We conjecture that F_2-sketching is optimal for this communication game. Our results confirm this conjecture for multiple important classes of functions: 1) low-degree F_2-polynomials, 2) functions with sparse Fourier spectrum, 3) most symmetric functions, 4) recursive majority function. These results rely on a new structural theorem that shows that F_2-sketching is optimal (up to constant factors) for uniformly distributed inputs. Furthermore, we show that (non-uniform) streaming algorithms that have to process random updates over F_2 can be constructed as F_2-sketches for the uniform distribution. In contrast with the previous work of Li, Nguyen and Woodruff (STOC'14) who show an analogous result for linear sketches over integers in the adversarial setting our result does not require the stream length to be triply exponential in n and holds for streams of length O(n) constructed through uniformly random updates. 
    more » « less
  2. We initiate a systematic study of linear sketching over $$\ftwo$$. For a given Boolean function treated as $$f \colon \ftwo^n \to \ftwo$$ a randomized $$\ftwo$$-sketch is a distribution $$\mathcal M$$ over $$d \times n$$ matrices with elements over $$\ftwo$$ such that $$\mathcal Mx$$ suffices for computing $f(x)$ with high probability. Such sketches for $$d \ll n$$ can be used to design small-space distributed and streaming algorithms. Motivated by these applications we study a connection between $$\ftwo$$-sketching and a two-player one-way communication game for the corresponding XOR-function. We conjecture that $$\ftwo$$-sketching is optimal for this communication game. Our results confirm this conjecture for multiple important classes of functions: 1) low-degree $$\ftwo$$-polynomials, 2) functions with sparse Fourier spectrum, 3) most symmetric functions, 4) recursive majority function. These results rely on a new structural theorem that shows that $$\ftwo$$-sketching is optimal (up to constant factors) for uniformly distributed inputs. Furthermore, we show that (non-uniform) streaming algorithms that have to process random updates over $$\ftwo$$ can be constructed as $$\ftwo$$-sketches for the uniform distribution. In contrast with the previous work of Li, Nguyen and Woodruff (STOC'14) who show an analogous result for linear sketches over integers in the adversarial setting our result does not require the stream length to be triply exponential in $$n$$ and holds for streams of length $$\tilde O(n)$$ constructed through uniformly random updates. 
    more » « less